Перевод: с русского на английский

с английского на русский

коэффициент достижения

  • 1 коэффициент достижения

    Универсальный русско-английский словарь > коэффициент достижения

  • 2 коэффициент достижения

    Russian-english psychology dictionary > коэффициент достижения

  • 3 коэффициент

    м., стат., мат.
    1) ( множитель) coefficient, quotient, multiplier, factor
    2) ( отношение) ratio
    3) ( показатель степени) index (pl. indexes, indices)
    - бинауральный коэффициент
    - биномиальный коэффициент
    - весовой коэффициент
    - весоростовой коэффициент
    - возрастной коэффициент
    - доверительный коэффициент
    - дыхательный коэффициент
    - коэффициент аккомодации
    - коэффициент акселерации
    - коэффициент активности
    - коэффициент альфа
    - коэффициент асимметрии
    - коэффициент ассимиляции
    - коэффициент ассоциации
    - коэффициент безопасности
    - коэффициент брачной рождаемости
    - коэффициент брачности
    - коэффициент Брунсвика
    - коэффициент валидности
    - коэффициент вариации
    - коэффициент вдоха и выдоха
    - коэффициент вероятности
    - коэффициент веса
    - коэффициент взаимодействия
    - коэффициент видимости
    - коэффициент внебрачной рождаемости
    - коэффициент внутренней непротиворечивости
    - коэффициент внутренней совместимости
    - коэффициент внутренней согласованности
    - коэффициент воспроизводства
    - коэффициент восстановления
    - коэффициент выживаемости
    - коэффициент детерминированности
    - коэффициент дисперсии
    - коэффициент дистресса - облегчения
    - коэффициент диффузии
    - коэффициент достижения
    - коэффициент единодушия между наблюдателями
    - коэффициент заболеваемости
    - коэффициент зависимости между величинами
    - коэффициент задержки
    - коэффициент затухания
    - коэффициент изменчивости
    - коэффициент иннервации
    - коэффициент интеллекта
    - коэффициент интереса
    - коэффициент искажения
    - коэффициент использования
    - коэффициент качества исполнения
    - коэффициент конкордансности
    - коэффициент корреляции первого порядка
    - коэффициент корреляции рангов Спирмана
    - коэффициент корреляции
    - коэффициент мертворождаемости
    - коэффициент множественной корреляции
    - коэффициент множественной регрессии
    - коэффициент мощности
    - коэффициент нагрузки
    - коэффициент надежности
    - коэффициент надежности, найденный методом расщепления
    - коэффициент напряженности
    - коэффициент насыщения
    - коэффициент недетерминированности
    - коэффициент незнания
    - коэффициент неопределенности
    - коэффициент образования
    - коэффициент обратной связи
    - коэффициент обучаемости
    - коэффициент общей детерминации
    - коэффициент общности
    - коэффициент однородности
    - коэффициент окостенения
    - коэффициент опасности
    - коэффициент оседлости
    - коэффициент отставания
    - коэффициент ошибки
    - коэффициент параллельных изменений
    - коэффициент подкрепления
    - коэффициент полезного действия
    - коэффициент потерь
    - коэффициент преломления
    - коэффициент принадлежности
    - коэффициент пропорциональности
    - коэффициент психофизиологического напряжения
    - коэффициент пути
    - коэффициент работоспособности
    - коэффициент развития
    - коэффициент разводов
    - коэффициент размножения
    - коэффициент ранговой корреляции
    - коэффициент распределения
    - коэффициент рассеяния
    - коэффициент рассогласования
    - коэффициент регрессии
    - коэффициент ретестовой надежности
    - коэффициент рождаемости
    - коэффициент связи
    - коэффициент скоординированности Кендалла
    - коэффициент смертности
    - коэффициент смешанной корреляции
    - коэффициент совпадения
    - коэффициент согласия между наблюдателями
    - коэффициент согласия
    - коэффициент согласованности
    - коэффициент сопряженности
    - коэффициент способностей
    - коэффициент стабильности
    - коэффициент сходства
    - коэффициент Таулесса
    - коэффициент умственных способностей
    - коэффициент усвоения
    - коэффициент усиления
    - коэффициент успешности
    - коэффициент устойчивости
    - коэффициент частной корреляции
    - коэффициент чувствительности
    - коэффициент шкалируемости
    - коэффициент эквивалентности
    - коэффициент эффективности переноса
    - коэффициент эффективности
    - коэффициент яркости
    - общий коэффициент
    - переводной коэффициент
    - повозрастные коэффициенты
    - поправочный коэффициент
    - путевой коэффициент
    - серединный коэффициент корреляции
    - случайный коэффициент
    - стандартизованный коэффициент
    - тау коэффициент корреляции
    - факторный коэффициент
    - фиксированный коэффициент

    Russian-english psychology dictionary > коэффициент

  • 4 дерево целей

    1. relevance tree
    2. objective tree

     

    дерево целей

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    дерево целей
    В программно-целевых методах планирования и управления — граф, схема, показывающая членение общих (генеральных) целей плана или программы на подцели, последних — на подцели следующего уровня и т.д. (дерево — это связный граф, выражающий соподчинение и взаимосвязи элементов; в данном случае такими элементами являются цели и подцели). Представление целей начинается с верхнего яруса, дальше они последовательно разукрупняются. Причем основным правилом разукрупнения целей является полнота: каждая цель верхнего уровня должна быть представлена в виде подцелей следующего уровня исчерпывающим образом, т.е. так, чтобы объединение понятий подцелей полностью определяло понятие исходной цели. На рис.Д.3. показан фрагмент примерного Д. ц. долгосрочной программы развития региона. Д. ц., направленное на решение такой народнохозяйственной и социальной задачи как подъем отставшего в своем развитии региона (генеральная цель программы), может включать подцели первого яруса: повышение благосостояния населения, развитие производительных сил, экологическое оздоровление и др. Одна из перечисленных целей — повышение благосостояния (на рис. Д.3. обозначенная цифрой 4), в свою очередь, на втором ярусе подразделяется на «материальное благосостояние» (4.1) и «социальное благосостояние» (4.2), а на третьем ярусе подцель «материальное благосостояние» расшифровывается как целая серия целей: «питание», «одежда», «жилой комплекс» и т.д. Разумеется, это очень условный пример. Но на нем можно познакомиться с основными понятиями, применяемыми в целевом планировании. Понятие «состязательность целей» означает, что достижение одной цели затрудняет достижение другой. Если каким-то способом получить численный коэффициент состязательности между ними, это позволит включить их в математическую программу расчетов по Д. ц. (например, расчетов количества времени, необходимого для достижения глобальной цели при разных вариантах распределения ресурсов между ними). Коэффициент взаимной поддержки целей, напротив, определяет, в какой мере достижение одной цели способствует достижению другой. Особенно важны коэффициенты значимости целей. Они определяются экспертным путем и показывают, какая из целей важнее, чем можно поступиться при необходимости для их достижения, и наоборот, на что надо обратить большее внимание, выделить больше ресурсов. От полноты информации, заключенной в Д. ц., в решающей степени зависит качество всей последующей работы — оценки программ, их прогнозируемых следствий, оценки планов, разработка всей системы деятельности по созданию условий для реализации планов и программ. Рис. Д.3. Фрагмент дерева целей 0 — генеральная цель: «Ускорение развития рассматриваемого региона»; 4 — «Повышение благосостояния населения»; 4.1 — «Материальное благосостояние»; 4.2 — «Социальное благосостояние»; 4.1.1 — «Улучшение природно-биологической среды жизни»; 4.1.2 — «Питание»; 4.1.3 — «Одежда»…; 4.1.3.1 — «Обувь» и т. д.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дерево целей

  • 5 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 6 На третьей захватке

    1. IV, V
    2. II, III

    2.6. На третьей захватке выполняют работы по уплотнению грунта насыпи.

    Грунт уплотняют слоями толщиной 0,25 - 0,30 м последовательными круговыми проходами пневмокатка ДУ-101 по всей ширине насыпи за десять проходов по одному следу.

    Уплотнять грунт следует при оптимальной влажности, определенной по ГОСТ 22733-77, которая не должна выходить за пределы указанной в табл. 1 для разных типов грунтов.

    Таблица 1

    Вид грунта

    Влажность при требуемом коэффициенте уплотнения

    1 - 0,98

    0,95

    0,90

    Пески пылеватые, супеси легкие, крупные

    Не более 1,35

    Не более 1,6

    Не нормируется

    Супеси легкие и пылеватые

    0,8 - 1,25

    0,75 - 1,35

    0,7 - 1,6

    Супеси тяжелые пылеватые и суглинки легкие пылеватые

    0,85 - 1,15

    0,8 - 1,2

    0,75 - 1,4

    Суглинки тяжелые пылеватые, глины

    0,95 - 1,05

    0,9 - 1,1

    0,85 - 1,2

    При недостаточной влажности грунт увлажняют с помощью поливомоечной машины. В технологической карте (табл. 3) расход воды на эти цели принят в количестве 3 % от объема грунта.

    Уплотнение следует начинать на расстоянии 2 м от бровки насыпи. Затем, смещая каток при каждом последующем проходе на 1/3 ширины следа в сторону бровки, прикатывают края насыпи, после чего уплотнение продолжают круговыми проходами катка, смещая полосы уплотнения от краев насыпи к ее оси, с перекрытием каждого следа на 1/3 ширины.

    Каждый последующий проход по одному и тому же следу начинают после перекрытия предыдущими проходами всей ширины земляного полотна.

    Требуемый коэффициент уплотнения грунта приведен в табл. 2. При оптимальной влажности грунта для достижения коэффициента уплотнения 0,95 ориентировочно назначают 6 - 8 проходов катка для связных и 4 - 6 - для несвязных грунтов; для достижения коэффициента уплотнения 0,98 - 8 - 12 проходов для связных и 6 - 8 - для несвязных грунтов. Необходимое количество проходов катка по одному следу уточняется пробной укаткой.

    Таблица 2

    Элементы земляного полотна

    Глубина расположения слоя от поверхности покрытия, м

    Наименьший коэффициент уплотнения грунта при типе дорожных одежд

    капитальном

    облегченном и переходном

    в дорожно-климатических зонах

    I

    II, III

    IV, V

    I

    II, III

    IV, V

    Рабочий слой

    До 1,5

    0,98 - 0,96

    1,0 - 0,98

    0,98 - 0,95

    0,95 - 0,93

    0,98 - 0,95

    0,95

    Для связных грунтов на начальном этапе уплотнения давление в шинах катка не должно превышать 0,2 - 0,3 МПа, на заключительном этапе - 0,6 - 0,8 МПа. При уплотнении песков давление в шинах на всех стадиях уплотнения не должно быть более 0,2 - 0,3 МПа.

    Первый и последний проходы по полосе укатки выполняют на малой скорости пневмокатка (2 - 2,5 км/ч), промежуточные проходы - на большей (до 8 - 10 км/ч).

    Отсыпку каждого последующего слоя можно производить только после разравнивания, уплотнения предыдущего и контроля качества работ.

    Источник: snip-id-42047: Технологические карты на устройство земляного полотна и дорожной одежды

    Русско-английский словарь нормативно-технической терминологии > На третьей захватке

  • 7 свинцово-кислотная аккумуляторная батарея

    1. lead acid battery

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > свинцово-кислотная аккумуляторная батарея

  • 8 взаимозаменяемость ресурсов

    1. input substitution

     

    взаимозаменяемость ресурсов
    Возможность альтернативного использования разных ресурсов: а) для сохранения или достижения заданного уровня производства (см. Производственная функция), б) для достижения оптимума. Именно этим обусловлена проблема выбора: там, где нет заменяемости, нет и выбора, и тогда фундаментальное понятие оптимальности теряет смысл. Вопрос о В.р. детально разработан в теории производственных функций. Возможности замещения характеризуют производственную функцию с точки зрения различных комбинаций затрат, порождающих одинаковые уровни выпуска продукта. Пусть, например, производство определенного количества зерна требует 10 рабочих и 2 т удобрений, а при внесении в почву только тонны удобрений потребуется уже 12 рабочих, чтобы получить тот же урожай. Здесь тонна удобрений (один ресурс) заменяется трудом двух рабочих (другой ресурс). (См. Предельная норма замещения). При этом учитывается следующее: а) при оптимальном сочетании ресурсов всякая замена ухудшает его (теорема заменяемости П. Сэмюэльсона); б) чем дефицитнее ресурс, тем выше относительная стоимость его замены (грубо говоря, тем большим количеством другого ресурса можно пожертвовать ради сохранения того же производственного результата); при взаимной замене двух ресурсов определяется коэффициент заменяемости, измеряемый углом наклона кривой равного продукта (изокванты); в) в динамических моделях возможности взаимной замены факторов возрастают во времени. Различают взаимозаменяемость технологическую и экономическую. Не всякие ресурсы (продукты), взаимозаменяемые технически, позволяют производить замену с точки зрения экономической. Выделяются три типа технологического замещения: один ресурс — разные способы использования, разные ресурсы — одно целевое назначение, разное во времени использование ресурсов. См. также: Эластичность замещения ресурсов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > взаимозаменяемость ресурсов

  • 9 популизм

    1. populist policy
    2. populism
    3. patrimonial management

     

    популизм

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    популизм
    популистская экономическая политика
    Направление экономической политики, в разные периоды проводившееся во многих странах и хорошо изученное экономистами. Обычно заключается в провозглашении и попытках реализации очень понятных и популярных в народе целей, без учета действительных возможностей их достижения. Например, предлагается рост зарплаты, компенсация обесценивающихся из-за инфляции вкладов, сокращение налогов, денежная поддержка предприятий, не находящих сбыта своей продукции, и так далее — кто скажет, что все это плохо, неблагородно? Но если у государства недостаточно ресурсов для всего этого, неминуемо увеличится дефицит государственного бюджета, а значит, раскрутится инфляция. От нее всем, и в первую очередь более бедным слоям населения, «од?ренным благородными решениями», станет только хуже. Таково абсолютно неизбежное последствие популизма. См. также Коэффициент монетизации экономики, Кредитно-денежная политика,. Экономическая политика
    [ http://slovar-lopatnikov.ru/]

    EN

    patrimonial management
    A type of leadership and management style attempting to gain the loyalty and support of subordinates by excessively providing for their needs and interests.
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > популизм

  • 10 предельное значение Q

    1. Q limit

     

    предельное значение Q
    Предельное значение Q означает минимальный требуемый допустимый коэффициент Q входного сигнала схемы принятия решения приемника для достижения эталонного КОБ (МСЭ-Т G.972).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > предельное значение Q

См. также в других словарях:

  • Коэффициент интенсивности напряжений — Коэффициент интенсивности напряжений, КИН, К (англ. Stress Intensity factor) используется в линейной механике разрушения для описания полей напряжений у вершины трещины. Само определение К возникло из рассмотрения задачи о напряжениях в теле …   Википедия

  • Коэффициент сочетаний нагрузок — коэффициент, учитывающий уменьшения вероятности одновременного достижения несколькими нагрузками их расчетных значений. Источник: СТО 36554501 015 2008: Нагрузки и воздействия Коэффициент сочетаний нагрузок 2.81 Коэффициент, учитывающий… …   Словарь-справочник терминов нормативно-технической документации

  • КОЭФФИЦИЕНТ ПРЯМЫХ ЗАТРАТ, ПЛАНОВЫЙ — коэффициент, характеризующий нормативы затрат продукции одной отрасли на производство единицы продукции другой отрасли. Зная коэффициент прямых затрат и задаваясь определенными контрольными цифрами по конечному продукту, можно рассчитывать… …   Большой экономический словарь

  • Коэффициент сочетаний нагрузок — – коэффициент, учитывающий уменьшение вероятности одновременного достижения несколькими нагрузками их расчетных значений. [СП 20.13330.2011, СНиП 2.01.07 85] Рубрика термина: Виды нагрузок на материалы Рубрики энциклопедии: Абразивное… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • КОЭФФИЦИЕНТ БЮФОНА — для многих видов животных это средняя продолжительность жизни вида, определяемая как 4 5 кратный срок достижения половой зрелости. См. также Продолжительность жизни видовая. Экологический энциклопедический словарь. Кишинев: Главная редакция… …   Экологический словарь

  • Коэффициент сочетаний γψ — учитывает вероятность одновременного достижения несколькими видами нагрузок их расчетных значений в определенный момент времени Источник: СП 31 114 2004: Правила проектирования жилых и общественных зданий для строительства в сейсмических райо …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент интеллекта — Проверить на соответствие критериям взвешенности изложения. Возможно, содержание данной статьи нарушает принцип взвешенного изложения, представляя малозначимые мнения и факты так же, как и более важные, либо уделяет слишком много места описанию… …   Википедия

  • Коэффициент рождаемости — Содержание 1 Абсолютные демографические показатели 1.1 Общая численность населения 1.2 Общий …   Википедия

  • Коэффициент использования установленной мощности — (КИУМ)[1] важнейшая характеристика эффективности работы предприятий электроэнергетики. Она равна отношению среднеарифметической мощности к установленной мощности электроустановки за определённый интервал времени[2]. В ядерной энергетике дают… …   Википедия

  • МОТИВАЦИЯ ДОСТИЖЕНИЯ — – выработанный в психике механизм достижения, действующий по формуле: мотив – «жажда успеха» – активность – цель – «достижение успеха». М. д. отражает потребность личности всеми доступными средствами избежать неудачи и достичь желаемого… …   Энциклопедический словарь по психологии и педагогике

  • БРУТТО-КОЭФФИЦИЕНТ ВОСПРОИЗВОДСТВА НАСЕЛЕНИЯ — БРУТТО КОЭФФИЦИЕНТ ВОСПРОИЗВОДСТВА НАСЕЛЕНИЯ, валовой коэффициент воспроиз ва населения, показатель замещения поколений, не учитывающий смертности; одна из обобщающих характеристик режима воспроизводства населения и сводная характеристика… …   Демографический энциклопедический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»